Data Analysis (Phân tích dữ liệu) là quá trình thu tập, xử lý, trực quan hóa dữ liệu với mục tiêu phát hiện ra thông tin hữu ích, hỗ trợ việc ra quyết định và trình bày những gì dữ liệu thể hiện. Đây là một bước quan trọng trong việc sử dụng dữ liệu để giải quyết các vấn đề trong kinh doanh, nghiên cứu, hoặc bất kỳ lĩnh vực nào.
Data Analysis sẽ bao gồm các công việc chính:
Mọi doanh nghiệp tham gia vào công cuộc chuyển đổi số thì đều cần đến phân tích dữ liệu. Theo tác giả Croll & Yoskovitz, phân tích dữ liệu giúp bảo vệ bản thân khỏi việc lừa dối chính mình, là sự thật hiểu rõ hiệu suất hiện tại của doanh nghiệp.
Phân tích dữ liệu sẽ giúp bạn đưa ra insight có tính thực tiễn để xác định vấn đề, xu hướng. Từ đó, đưa ra những chiến lược có căn cứ mang lại hiệu quả cao.
Ví dụ: Ở Việt Nam, một công ty như VinaMilk sẽ có hàng triệu khách hàng và hàng ngàn đại lý khắp cả nước. Đến cuối tháng hay cuối một quý, các nhà quản lý muốn biết tình hình kinh doanh của công ty tại các thị trường như Hồ Chí Minh, Hà Nội và Đà Nẵng như thế nào để đưa ra các chiến lược hợp lý.
Các câu hỏi đang được đặt ra là:
Từng câu hỏi này sẽ được đưa đến các bộ phận. Để trả lời được chúng, các bộ phận cần những số liệu, báo cáo khác nhau. Data Analyst sẽ là người hỗ trợ truy xuất những dữ liệu này từ báo cáo hoạt động của từng khu vực (theo quý, theo năm), sau đó dùng công cụ, mô hình hòa chúng trở nên trực quan hơn và đưa ra những thông tin mà các bộ phận cần.
Dựa trên kết quả báo cáo từ DA, các bộ phận, mảng chuyên phụ trách quản lý sẽ đưa ra những chính sách tương ứng cho hoạt động bán hàng của doanh nghiệp về sau. Vòng tuần hoàn này xoay vòng liên tục với những câu hỏi mới cùng sự biến đổi của thị trường kinh tế.
Như vậy, có thể thấy rằng, doanh nghiệp càng lớn, phát triển càng nhanh, thị trường kinh tế càng sôi động thì vai trò của một Data Analyst càng quan trọng.
4 kỹ thuật phân tích dữ liệu được sử dụng phổ biến nhất trong Data Analysis là: Phân tích mô tả (Descriptive Analysis),
Kỹ thuật phân tích dữ liệu mô tả (Descriptive analysis) là phương pháp nhằm mục đích đưa ra kết quả trả lời cho câu hỏi “điều gì đã xảy ra?”, bằng cách sắp xếp và diễn giải dữ liệu thô từ nhiều nguồn khác nhau để biến nó thành insights có giá trị cho doanh nghiệp của bạn.
Ví dụ phổ biến nhất của phân tích miêu tả là các loại báo cáo được sử dụng để đánh giá tình hình kinh doanh của một doanh nghiệp trong một khoảng thời gian cụ thể như:
Phân tích chẩn đoán (Diagnostic Analysis) là một trong những loại hình phân tích dữ liệu mạnh mẽ nhất. Nó là một phương pháp phân tích dữ liệu được sử dụng để giải thích tại sao một vấn đề nào đó xảy ra. Quá trình này liên quan đến việc tìm hiểu sâu hơn vào dữ liệu để tìm kiếm các thông tin chi tiết có giá trị.
Phân tích miêu tả là bước đầu tiên trong phân tích dữ liệu và nó đơn giản chỉ ghi lại các dữ liệu về những gì đã xảy ra. Trong khi đó, phân tích chẩn đoán là bước tiếp theo để khám phá ra lý do đằng sau kết quả hoặc kết luận đó.
Các kỹ thuật phân tích chẩn đoán bao gồm:
>>> Xem thêm: Phân tích chẩn đoán là gì? Ứng dụng của phân tích chẩn đoán vào thực tế hiện nay.
Phương pháp dự đoán (Predictive Analysis) cho phép bạn nhìn vào dữ liệu để trả lời câu hỏi: điều gì sẽ xảy ra?
Để làm được điều này, phương pháp phân tích dự đoán sử dụng kết quả của phân tích miêu tả, khám phá và chẩn đoán đã đề cập trước đó, bên cạnh học máy (Machine Learning) và trí tuệ nhân tạo (AI). Vậy bạn có thể dự đoán các kết quả và sự kiện tiềm năng trong tương lai của doanh nghiệp của bạn.
Nó giúp giảm thiểu rủi ro, tối ưu hóa các hoạt động và tăng doanh thu cho bất kỳ ngành nghề kinh doanh nào. Ví dụ, ngành tài chính đã lâu đã áp dụng phân tích dự đoán để phát hiện và ngăn chặn gian lận, đánh giá rủi ro tín dụng, tận dụng cơ hội bán thêm và bán kèm tối đa, và giữ chân khách hàng có giá trị.
Một trong những loại phương pháp phân tích dữ liệu hiệu quả nhất trong nghiên cứu là Phân tích đề xuất (Prescriptive Analysis). Phương pháp nhằm trả lời cho câu hỏi “Nó sẽ diễn ra như thế nào?” và “Nên làm gì tiếp theo?”.
Phân tích đề xuất là một công cụ quan trọng để tối ưu hoá hoạt động kinh doanh và tạo ra giá trị cho khách hàng. Điều này đặc biệt quan trọng trong một thị trường đầy cạnh tranh, khi các doanh nghiệp phải liên tục cải thiện và tối ưu hoá phương thức kinh doanh của mình.
Việc phân tích dữ liệu càng trở nên quan trọng hơn khi bạn đang thực hiện các chiến dịch quảng cáo hoặc tiếp thị trực tuyến. Bằng cách phân tích dữ liệu từ các nguồn khác nhau, bạn có thể đề xuất các chiến lược tiếp thị hiệu quả, nâng cao chất lượng dịch vụ và tạo ra mối quan hệ tốt hơn với khách hàng.
Tuy nhiên, để thực hiện phân tích đề xuất hiệu quả, bạn cần đầu tư vào các công cụ và kỹ thuật phân tích dữ liệu mạnh mẽ và đầy đủ. Bạn cũng cần hiểu rõ nhu cầu của khách hàng, giải pháp tối ưu hoá và cách triển khai các đề xuất để tối đa hóa giá trị của chúng.
Chuyên viên phân tích dữ liệu chính là người thực hiện quá trình phân tích để giải quyết các bài toán dựa trên dữ liệu. Họ là cầu nối giữa dữ liệu thô và các hành động chiến lược thông qua việc phân tích và trực quan hóa dữ liệu.
Không phải ở bất cứ doanh nghiệp nào, người làm phân tích dữ liệu cũng được gọi là Data Analyst. Tuỳ theo quy mô công ty và tính chất công việc, sẽ có những chức danh khác nhau như: Business Intelligence Analyst,... hoặc phân hoá theo từng phòng ban như Marketing Analyst hay Finance Analyst,....
Tùy thuộc vào từng mô hình doanh nghiệp, quy trình làm việc của một Data Analyst sẽ khác nhau. Nhưng về cơ bản, quy trình ấy sẽ gồm những công đoạn sau:
>>> Xem thêm: Quy trình phân tích dữ liệu trong Marketing - Công cụ & kỹ năng cần thiết.
Data Analyst chính là chuyên viên phân tích dữ liệu. Vậy để thực hiện các công việc trên, Data Analyst cần kỹ năng gì?
Vì tính chất công việc liên quan rất nhiều đến thu gom và tổ chức dữ liệu nên kỹ năng lập trình là thiết yếu và bắt buộc. Các kỹ năng lập trình và phân tích dữ liệu là rất quan trọng trong ngành Data Analyst. Để trở thành một chuyên gia trong lĩnh vực này, bạn cần phải thành thạo SQL để truy xuất dữ liệu và Python hoặc R để phân tích dữ liệu hoặc các BI Tools như Power BI hay Tableau để trực quan hoá dữ liệu. Nếu bạn muốn đạt được mức thu nhập $1000/tháng, thì việc thành thạo những kỹ năng này là bắt buộc. Vì vậy, bạn nên bắt đầu với SQL trước, sau đó chuyển sang Python hoặc R.
Một kỹ năng quan trọng khác trong ngành này là kỹ năng phân tích, đặc biệt là trong việc hiểu và đáp ứng các yêu cầu phân tích từ quản lý hay khách hàng. Việc phân tích và đưa ra thông tin chính xác và thực tế là cần thiết để giúp cho quyết định được đưa ra một cách chính xác. Để phát triển kỹ năng này, bạn có thể thực hành trong quá trình học lập trình và tự khám phá, bởi không ai có thể dạy bạn về điều này.
Kỹ năng thiết kế báo cáo cũng là một yếu tố quan trọng trong công việc của Data Analyst, vì nó giúp chuyển đổi các số liệu thô thành hình ảnh và biểu đồ khoa học để giúp người đọc dễ dàng tiếp thu thông tin và nhận biết các xu hướng. Bạn có thể sử dụng Python hoặc R hoặc các công cụ Business Intelligence (BI) để thực hiện việc này.
Ngoài ra, kỹ năng sử dụng Excel cũng là lợi thế rất lớn, đặc biệt là tại thị trường Việt Nam, vì rất nhiều công ty ở đây vẫn sử dụng Excel là công cụ lưu trữ dữ liệu chính. Các kỹ năng phân tích dữ liệu sử dụng Excel, như Pivot Table hay dựng các biểu đồ với dữ liệu có sẵn, cũng rất quan trọng.
Cuối cùng, kỹ năng giao tiếp cũng rất quan trọng trong công việc của Data Analyst, bởi vì bạn cần phải giao tiếp với các phòng ban khác để hiểu nhu cầu của họ, và cũng cần phải giải thích cho người khác biết về những thông tin mà bạn tìm thấy.
Lĩnh vực phân tích ở Việt Nam đang ở giai đoạn đầu phát triển khi nhu cầu tuyển dụng mới chỉ tăng cao trong 3 đến 4 năm trở lại đây và tập trung nhiều trong lĩnh vực E Commerce, Finance/Banking. Vì thế, số lượng job Data vẫn còn hạn chế và chắc chắn sẽ bùng nổ hơn trong thời gian tới vì chuyển đổi số là nhu cầu tất yếu của mọi doanh nghiệp.
Vậy nên, Data Analytics vẫn là một miền đất hứa, giàu tiềm năng cho nhân sự thời đại số. Dù hiện tại, việc chinh phục ngành Data đối với người mới khó khăn hơn so với trước. Nhưng chắc chắn sẽ thành công nếu bạn thay đổi tư duy học, cách học sao cho phù hợp với tình hình tuyển dụng và làm việc thực tế của thị trường.
Với tiềm năng rộng mở trong xã hội vận hành bằng Big Data (dữ liệu lớn), Data Analyst vẫn sẽ là ngành khát nhân lực trong 5 năm tới. Nếu bạn đang cần tìm kiếm một hướng đi chuyển ngành mang lại nhiều cơ hội hấp dẫn thì DA chính là một điểm xuất phát hoàn hảo.
Chương trình học Data Analyst tại MindX bám sát theo các tiêu chí nhân sự nhà tuyển dụng mong muốn hiện nay là lựa chọn phù hợp dành cho bạn trên hành trình chinh phục phân tích dữ liệu.
Tham khảo chi tiết Lộ trình học tập TẠI ĐÂY.